Disperzija protiv iskrivljenosti
U statistikama i teoriji vjerojatnosti, često se varijacije u raspodjeli moraju izraziti kvantitativno u svrhu usporedbe. Disperzija i iskrivljenost dva su statistička koncepta gdje se oblik raspodjele prikazuje u kvantitativnoj skali.
Više o raspršivanju
U statistikama je disperzija varijacija slučajne varijable ili njezina raspodjela vjerojatnosti. To je mjera udaljenosti točaka podataka od središnje vrijednosti. Da bi se to kvantitativno izrazilo, mjere disperzije koriste se u opisnoj statistici.
Varijansa, standardno odstupanje i međukvartilni opseg najčešće su korištene mjere disperzije.
Ako vrijednosti podataka imaju određenu jedinicu, mjere mjerenja disperzije također mogu imati iste jedinice. Interdecilni raspon, opseg, srednja razlika, srednje apsolutno odstupanje, prosječno apsolutno odstupanje i standardno odstupanje udaljenosti mjere su rasipanja s jedinicama.
Suprotno tome, postoje mjere disperzije koje nemaju jedinice, tj. Bezdimenzionalne. Varijansa, koeficijent varijacije, kvartilni koeficijent disperzije i relativna srednja razlika mjere su disperzije bez jedinica.
Disperzija u sustavu može nastati iz pogrešaka, kao što su instrumentalne i opažačke pogreške. Također, slučajne varijacije u samom uzorku mogu uzrokovati varijacije. Važno je imati kvantitativnu predodžbu o promjeni podataka prije donošenja drugih zaključaka iz skupa podataka.
Više o Skewnessu
U statistici, iskrivljenost je mjera asimetrije raspodjele vjerojatnosti. Iskrivljenost može biti pozitivna ili negativna, ili u nekim slučajevima uopće ne postoji. Također se može smatrati mjerom odstupanja od normalne raspodjele.
Ako je iskrivljenost pozitivna, tada je glavnina točaka podataka centrirana lijevo od krivulje, a desni rep je duži. Ako je iskrivljenost negativna, glavnina točaka podataka centrirana je udesno od krivulje, a lijevi rep prilično je dugačak. Ako je iskrivljenost jednaka nuli, tada se stanovništvo normalno raspoređuje.
U normalnoj raspodjeli, to jest kada je krivulja simetrična, srednja vrijednost, medijan i način imaju istu vrijednost. Ako iskrivljenost nije nula, ovo svojstvo ne vrijedi, a srednja vrijednost, način rada i medijan mogu imati različite vrijednosti.
Pearsonov prvi i drugi koeficijent iskrivljenosti obično se koriste za određivanje iskrivljenosti raspodjele.
Pearsonov prvi koeficient iskrivljenosti = (srednja vrijednost - način rada) / (standardna devijacija)
Pearsonov drugi koeficijent iskrivljenosti = 3 (srednja vrijednost - način rada) / (standardno odstupanje)
U osjetljivijim slučajevima koristi se prilagođeni Fisher-Pearsonov standardizirani koeficijent momenta.
G = {n / (n-1) (n-2)} ∑ n i = 1 ((y-ӯ) / s) 3
Koja je razlika između disperzije i iskrivljenosti?
Disperzija se odnosi na opseg u kojem su podatkovne točke raspoređene, a iskrivljenost se tiče simetrije raspodjele.
Obje mjere disperzije i iskrivljenosti opisne su mjere, a koeficijent iskrivljenosti daje pokazatelj oblika raspodjele.
Mjere raspršivanja koriste se za razumijevanje raspona točaka podataka i odstupanja od srednje vrijednosti, dok se iskrivljenost koristi za razumijevanje tendencije promjene točaka podataka u određenom smjeru.